Description: A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelneq2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → ¬ 𝐵 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶 ) ) | |
| 2 | 1 | biimpcd | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 = 𝐶 → 𝐴 ∈ 𝐶 ) ) |
| 3 | 2 | con3dimp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → ¬ 𝐵 = 𝐶 ) |