Description: If a class is not an element of an unordered pair, it is not the first listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nelpr1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| nelpr1.n | ⊢ ( 𝜑 → ¬ 𝐴 ∈ { 𝐵 , 𝐶 } ) | ||
| Assertion | nelpr1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nelpr1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | nelpr1.n | ⊢ ( 𝜑 → ¬ 𝐴 ∈ { 𝐵 , 𝐶 } ) | |
| 3 | animorrl | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) | |
| 4 | elprg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) | 
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) | 
| 7 | 3 6 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ { 𝐵 , 𝐶 } ) | 
| 8 | 2 7 | mtand | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) | 
| 9 | 8 | neqned | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |