Metamath Proof Explorer


Theorem nelpr2

Description: If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses nelpr2.a ( 𝜑𝐴𝑉 )
nelpr2.n ( 𝜑 → ¬ 𝐴 ∈ { 𝐵 , 𝐶 } )
Assertion nelpr2 ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 nelpr2.a ( 𝜑𝐴𝑉 )
2 nelpr2.n ( 𝜑 → ¬ 𝐴 ∈ { 𝐵 , 𝐶 } )
3 animorr ( ( 𝜑𝐴 = 𝐶 ) → ( 𝐴 = 𝐵𝐴 = 𝐶 ) )
4 elprg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )
5 1 4 syl ( 𝜑 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )
6 5 adantr ( ( 𝜑𝐴 = 𝐶 ) → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵𝐴 = 𝐶 ) ) )
7 3 6 mpbird ( ( 𝜑𝐴 = 𝐶 ) → 𝐴 ∈ { 𝐵 , 𝐶 } )
8 2 7 mtand ( 𝜑 → ¬ 𝐴 = 𝐶 )
9 8 neqned ( 𝜑𝐴𝐶 )