Metamath Proof Explorer


Theorem nelpri

Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Hypotheses nelpri.1 𝐴𝐵
nelpri.2 𝐴𝐶
Assertion nelpri ¬ 𝐴 ∈ { 𝐵 , 𝐶 }

Proof

Step Hyp Ref Expression
1 nelpri.1 𝐴𝐵
2 nelpri.2 𝐴𝐶
3 neanior ( ( 𝐴𝐵𝐴𝐶 ) ↔ ¬ ( 𝐴 = 𝐵𝐴 = 𝐶 ) )
4 elpri ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵𝐴 = 𝐶 ) )
5 4 con3i ( ¬ ( 𝐴 = 𝐵𝐴 = 𝐶 ) → ¬ 𝐴 ∈ { 𝐵 , 𝐶 } )
6 3 5 sylbi ( ( 𝐴𝐵𝐴𝐶 ) → ¬ 𝐴 ∈ { 𝐵 , 𝐶 } )
7 1 2 6 mp2an ¬ 𝐴 ∈ { 𝐵 , 𝐶 }