Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nelpri.1 | ⊢ 𝐴 ≠ 𝐵 | |
nelpri.2 | ⊢ 𝐴 ≠ 𝐶 | ||
Assertion | nelpri | ⊢ ¬ 𝐴 ∈ { 𝐵 , 𝐶 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpri.1 | ⊢ 𝐴 ≠ 𝐵 | |
2 | nelpri.2 | ⊢ 𝐴 ≠ 𝐶 | |
3 | neanior | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) | |
4 | elpri | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) | |
5 | 4 | con3i | ⊢ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) → ¬ 𝐴 ∈ { 𝐵 , 𝐶 } ) |
6 | 3 5 | sylbi | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) → ¬ 𝐴 ∈ { 𝐵 , 𝐶 } ) |
7 | 1 2 6 | mp2an | ⊢ ¬ 𝐴 ∈ { 𝐵 , 𝐶 } |