Metamath Proof Explorer


Theorem nelrdva

Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017)

Ref Expression
Hypothesis nelrdva.1 ( ( 𝜑𝑥𝐴 ) → 𝑥𝐵 )
Assertion nelrdva ( 𝜑 → ¬ 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 nelrdva.1 ( ( 𝜑𝑥𝐴 ) → 𝑥𝐵 )
2 eqidd ( ( 𝜑𝐵𝐴 ) → 𝐵 = 𝐵 )
3 eleq1 ( 𝑥 = 𝐵 → ( 𝑥𝐴𝐵𝐴 ) )
4 3 anbi2d ( 𝑥 = 𝐵 → ( ( 𝜑𝑥𝐴 ) ↔ ( 𝜑𝐵𝐴 ) ) )
5 neeq1 ( 𝑥 = 𝐵 → ( 𝑥𝐵𝐵𝐵 ) )
6 4 5 imbi12d ( 𝑥 = 𝐵 → ( ( ( 𝜑𝑥𝐴 ) → 𝑥𝐵 ) ↔ ( ( 𝜑𝐵𝐴 ) → 𝐵𝐵 ) ) )
7 6 1 vtoclg ( 𝐵𝐴 → ( ( 𝜑𝐵𝐴 ) → 𝐵𝐵 ) )
8 7 anabsi7 ( ( 𝜑𝐵𝐴 ) → 𝐵𝐵 )
9 8 neneqd ( ( 𝜑𝐵𝐴 ) → ¬ 𝐵 = 𝐵 )
10 2 9 pm2.65da ( 𝜑 → ¬ 𝐵𝐴 )