Metamath Proof Explorer


Theorem nelrnmpt

Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses nelrnmpt.x 𝑥 𝜑
nelrnmpt.f 𝐹 = ( 𝑥𝐴𝐵 )
nelrnmpt.c ( 𝜑𝐶𝑉 )
nelrnmpt.n ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
Assertion nelrnmpt ( 𝜑 → ¬ 𝐶 ∈ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 nelrnmpt.x 𝑥 𝜑
2 nelrnmpt.f 𝐹 = ( 𝑥𝐴𝐵 )
3 nelrnmpt.c ( 𝜑𝐶𝑉 )
4 nelrnmpt.n ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
5 4 neneqd ( ( 𝜑𝑥𝐴 ) → ¬ 𝐶 = 𝐵 )
6 5 ex ( 𝜑 → ( 𝑥𝐴 → ¬ 𝐶 = 𝐵 ) )
7 1 6 ralrimi ( 𝜑 → ∀ 𝑥𝐴 ¬ 𝐶 = 𝐵 )
8 ralnex ( ∀ 𝑥𝐴 ¬ 𝐶 = 𝐵 ↔ ¬ ∃ 𝑥𝐴 𝐶 = 𝐵 )
9 7 8 sylib ( 𝜑 → ¬ ∃ 𝑥𝐴 𝐶 = 𝐵 )
10 2 elrnmpt ( 𝐶𝑉 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴 𝐶 = 𝐵 ) )
11 3 10 syl ( 𝜑 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴 𝐶 = 𝐵 ) )
12 9 11 mtbird ( 𝜑 → ¬ 𝐶 ∈ ran 𝐹 )