Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020) (Proof shortened by BJ, 4-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nelsn | ⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ { 𝐵 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni | ⊢ ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 ) | |
2 | 1 | necon3ai | ⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ { 𝐵 } ) |