Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020) (Proof shortened by BJ, 4-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelsn | ⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni | ⊢ ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 ) | |
| 2 | 1 | necon3ai | ⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ { 𝐵 } ) |