Metamath Proof Explorer


Theorem nelss

Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015)

Ref Expression
Assertion nelss ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) → ¬ 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐵𝐶 → ( 𝐴𝐵𝐴𝐶 ) )
2 1 com12 ( 𝐴𝐵 → ( 𝐵𝐶𝐴𝐶 ) )
3 2 con3dimp ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) → ¬ 𝐵𝐶 )