Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nelss | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → ¬ 𝐵 ⊆ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶 ) ) | |
2 | 1 | com12 | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ⊆ 𝐶 → 𝐴 ∈ 𝐶 ) ) |
3 | 2 | con3dimp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → ¬ 𝐵 ⊆ 𝐶 ) |