Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelss | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → ¬ 𝐵 ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶 ) ) | |
| 2 | 1 | com12 | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ⊆ 𝐶 → 𝐴 ∈ 𝐶 ) ) |
| 3 | 2 | con3dimp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → ¬ 𝐵 ⊆ 𝐶 ) |