Description: If two classes are different, a third class must be different of at least one of them. (Contributed by Thierry Arnoux, 8-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | neneor | ⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) | |
2 | 1 | necon3ai | ⊢ ( 𝐴 ≠ 𝐵 → ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) |
3 | neorian | ⊢ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶 ) ↔ ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) | |
4 | 2 3 | sylibr | ⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶 ) ) |