Description: Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neneqd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| Assertion | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neneqd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 2 | df-ne | ⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |