Metamath Proof Explorer


Theorem neq0f

Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of TakeutiZaring p. 20. This version of neq0 requires only that x not be free in, rather than not occur in, A . (Contributed by BJ, 15-Jul-2021)

Ref Expression
Hypothesis eq0f.1 𝑥 𝐴
Assertion neq0f ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 eq0f.1 𝑥 𝐴
2 1 eq0f ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
3 2 notbii ( ¬ 𝐴 = ∅ ↔ ¬ ∀ 𝑥 ¬ 𝑥𝐴 )
4 df-ex ( ∃ 𝑥 𝑥𝐴 ↔ ¬ ∀ 𝑥 ¬ 𝑥𝐴 )
5 3 4 bitr4i ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥𝐴 )