Description: Inference associated with nesym . (Contributed by BJ, 7-Jul-2018) (Proof shortened by Wolf Lammen, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nesymir.1 | ⊢ ¬ 𝐴 = 𝐵 | |
| Assertion | nesymir | ⊢ 𝐵 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymir.1 | ⊢ ¬ 𝐴 = 𝐵 | |
| 2 | 1 | neir | ⊢ 𝐴 ≠ 𝐵 |
| 3 | 2 | necomi | ⊢ 𝐵 ≠ 𝐴 |