Description: Inference associated with nesym . (Contributed by BJ, 7-Jul-2018) (Proof shortened by Wolf Lammen, 25-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nesymir.1 | ⊢ ¬ 𝐴 = 𝐵 | |
Assertion | nesymir | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymir.1 | ⊢ ¬ 𝐴 = 𝐵 | |
2 | 1 | neir | ⊢ 𝐴 ≠ 𝐵 |
3 | 2 | necomi | ⊢ 𝐵 ≠ 𝐴 |