Description: One direction of the biconditional in newbday . (Contributed by Scott Fenton, 7-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | newbdayim | ⊢ ( 𝑋 ∈ ( N ‘ 𝐴 ) → ( bday ‘ 𝑋 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝑋 ∈ ( N ‘ 𝐴 ) → 𝐴 ∈ dom N ) | |
| 2 | newf | ⊢ N : On ⟶ 𝒫 No | |
| 3 | fdm | ⊢ ( N : On ⟶ 𝒫 No → dom N = On ) | |
| 4 | 2 3 | ax-mp | ⊢ dom N = On |
| 5 | 1 4 | eleqtrdi | ⊢ ( 𝑋 ∈ ( N ‘ 𝐴 ) → 𝐴 ∈ On ) |
| 6 | newssno | ⊢ ( N ‘ 𝐴 ) ⊆ No | |
| 7 | 6 | sseli | ⊢ ( 𝑋 ∈ ( N ‘ 𝐴 ) → 𝑋 ∈ No ) |
| 8 | newbday | ⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( 𝑋 ∈ ( N ‘ 𝐴 ) ↔ ( bday ‘ 𝑋 ) = 𝐴 ) ) | |
| 9 | 5 7 8 | syl2anc | ⊢ ( 𝑋 ∈ ( N ‘ 𝐴 ) → ( 𝑋 ∈ ( N ‘ 𝐴 ) ↔ ( bday ‘ 𝑋 ) = 𝐴 ) ) |
| 10 | 9 | ibi | ⊢ ( 𝑋 ∈ ( N ‘ 𝐴 ) → ( bday ‘ 𝑋 ) = 𝐴 ) |