Metamath Proof Explorer
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002)
|
|
Ref |
Expression |
|
Hypotheses |
nexdh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
|
|
nexdh.2 |
⊢ ( 𝜑 → ¬ 𝜓 ) |
|
Assertion |
nexdh |
⊢ ( 𝜑 → ¬ ∃ 𝑥 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nexdh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
nexdh.2 |
⊢ ( 𝜑 → ¬ 𝜓 ) |
3 |
1 2
|
alrimih |
⊢ ( 𝜑 → ∀ 𝑥 ¬ 𝜓 ) |
4 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∃ 𝑥 𝜓 ) |
5 |
3 4
|
sylib |
⊢ ( 𝜑 → ¬ ∃ 𝑥 𝜓 ) |