Metamath Proof Explorer


Theorem nexdh

Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002)

Ref Expression
Hypotheses nexdh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
nexdh.2 ( 𝜑 → ¬ 𝜓 )
Assertion nexdh ( 𝜑 → ¬ ∃ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 nexdh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 nexdh.2 ( 𝜑 → ¬ 𝜓 )
3 1 2 alrimih ( 𝜑 → ∀ 𝑥 ¬ 𝜓 )
4 alnex ( ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∃ 𝑥 𝜓 )
5 3 4 sylib ( 𝜑 → ¬ ∃ 𝑥 𝜓 )