Metamath Proof Explorer


Theorem nexmo

Description: Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022) Avoid ax-11 . (Revised by Wolf Lammen, 16-Oct-2022)

Ref Expression
Assertion nexmo ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 pm2.21 ( ¬ 𝜑 → ( 𝜑𝑥 = 𝑦 ) )
2 1 alimi ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
3 2 alrimiv ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
4 3 19.2d ( ∀ 𝑥 ¬ 𝜑 → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
5 alnex ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 )
6 5 bicomi ( ¬ ∃ 𝑥 𝜑 ↔ ∀ 𝑥 ¬ 𝜑 )
7 df-mo ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
8 4 6 7 3imtr4i ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 )