Description: Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022) Avoid ax-11 . (Revised by Wolf Lammen, 16-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nexmo | ⊢ ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 3 | 2 | alrimiv | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 4 | 3 | 19.2d | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 5 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 6 | 5 | bicomi | ⊢ ( ¬ ∃ 𝑥 𝜑 ↔ ∀ 𝑥 ¬ 𝜑 ) |
| 7 | df-mo | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 8 | 4 6 7 | 3imtr4i | ⊢ ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) |