Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 ∈ ℕ ) → 𝐴 ∈ ℕ ) |
2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
3 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 ∈ ℕ ) → 2 ≤ 𝐵 ) |
4 |
|
id |
⊢ ( 𝑘 = 1 → 𝑘 = 1 ) |
5 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 1 ) ) |
6 |
4 5
|
breq12d |
⊢ ( 𝑘 = 1 → ( 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ↔ 1 ≤ ( 𝐵 ↑ 1 ) ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑘 = 1 → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ) ↔ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ≤ ( 𝐵 ↑ 1 ) ) ) ) |
8 |
|
id |
⊢ ( 𝑘 = 𝑛 → 𝑘 = 𝑛 ) |
9 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 𝑛 ) ) |
10 |
8 9
|
breq12d |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ↔ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ) ↔ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) ) ) |
12 |
|
id |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → 𝑘 = ( 𝑛 + 1 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) |
14 |
12 13
|
breq12d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ↔ ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ) ↔ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) ) ) |
16 |
|
id |
⊢ ( 𝑘 = 𝐴 → 𝑘 = 𝐴 ) |
17 |
|
oveq2 |
⊢ ( 𝑘 = 𝐴 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 𝐴 ) ) |
18 |
16 17
|
breq12d |
⊢ ( 𝑘 = 𝐴 → ( 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ↔ 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑘 = 𝐴 → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ) ↔ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) ) ) |
20 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
21 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
22 |
21
|
a1i |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ∈ ℕ0 ) |
23 |
|
1red |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ∈ ℝ ) |
24 |
|
2re |
⊢ 2 ∈ ℝ |
25 |
24
|
a1i |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 2 ∈ ℝ ) |
26 |
|
1le2 |
⊢ 1 ≤ 2 |
27 |
26
|
a1i |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ≤ 2 ) |
28 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 2 ≤ 𝐵 ) |
29 |
23 25 20 27 28
|
letrd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ≤ 𝐵 ) |
30 |
20 22 29
|
expge1d |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ≤ ( 𝐵 ↑ 1 ) ) |
31 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ∈ ℕ ) |
32 |
31
|
nnnn0d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ∈ ℕ0 ) |
33 |
32
|
nn0red |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ∈ ℝ ) |
34 |
|
1red |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 1 ∈ ℝ ) |
35 |
33 34
|
readdcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
36 |
20
|
3ad2ant2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝐵 ∈ ℝ ) |
37 |
33 36
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 𝐵 ) ∈ ℝ ) |
38 |
36 32
|
reexpcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝐵 ↑ 𝑛 ) ∈ ℝ ) |
39 |
38 36
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( ( 𝐵 ↑ 𝑛 ) · 𝐵 ) ∈ ℝ ) |
40 |
24
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 2 ∈ ℝ ) |
41 |
33 40
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 2 ) ∈ ℝ ) |
42 |
31
|
nnge1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 1 ≤ 𝑛 ) |
43 |
34 33 33 42
|
leadd2dd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( 𝑛 + 𝑛 ) ) |
44 |
33
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ∈ ℂ ) |
45 |
44
|
times2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 2 ) = ( 𝑛 + 𝑛 ) ) |
46 |
43 45
|
breqtrrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( 𝑛 · 2 ) ) |
47 |
32
|
nn0ge0d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 0 ≤ 𝑛 ) |
48 |
|
simp2r |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 2 ≤ 𝐵 ) |
49 |
40 36 33 47 48
|
lemul2ad |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 2 ) ≤ ( 𝑛 · 𝐵 ) ) |
50 |
35 41 37 46 49
|
letrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( 𝑛 · 𝐵 ) ) |
51 |
|
0red |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 0 ∈ ℝ ) |
52 |
|
0le2 |
⊢ 0 ≤ 2 |
53 |
52
|
a1i |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 0 ≤ 2 ) |
54 |
51 25 20 53 28
|
letrd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 0 ≤ 𝐵 ) |
55 |
54
|
3ad2ant2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 0 ≤ 𝐵 ) |
56 |
|
simp3 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) |
57 |
33 38 36 55 56
|
lemul1ad |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 𝐵 ) ≤ ( ( 𝐵 ↑ 𝑛 ) · 𝐵 ) ) |
58 |
35 37 39 50 57
|
letrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( ( 𝐵 ↑ 𝑛 ) · 𝐵 ) ) |
59 |
36
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝐵 ∈ ℂ ) |
60 |
59 32
|
expp1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝐵 ↑ ( 𝑛 + 1 ) ) = ( ( 𝐵 ↑ 𝑛 ) · 𝐵 ) ) |
61 |
58 60
|
breqtrrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) |
62 |
61
|
3exp |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → ( 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) → ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) ) ) |
63 |
62
|
a2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) ) ) |
64 |
7 11 15 19 30 63
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) ) |
65 |
64
|
3impib |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) |
66 |
1 2 3 65
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 ∈ ℕ ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) |
67 |
|
0le1 |
⊢ 0 ≤ 1 |
68 |
67
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 0 ≤ 1 ) |
69 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
70 |
69
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → ( 𝐵 ↑ 𝐴 ) = ( 𝐵 ↑ 0 ) ) |
71 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 𝐵 ∈ ℝ ) |
72 |
71
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 𝐵 ∈ ℂ ) |
73 |
72
|
exp0d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → ( 𝐵 ↑ 0 ) = 1 ) |
74 |
70 73
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → ( 𝐵 ↑ 𝐴 ) = 1 ) |
75 |
68 69 74
|
3brtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) |
76 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
77 |
76
|
biimpi |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
78 |
77
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
79 |
66 75 78
|
mpjaodan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) |