Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ 𝐴 ) |
2 |
|
simp2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ 𝐴 ) |
3 |
|
fvconst |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = 𝐵 ) |
4 |
1 3
|
sylan2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝐵 ) |
5 |
|
fvconst |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑌 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑌 ) = 𝐵 ) |
6 |
2 5
|
sylan2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 𝐵 ) |
7 |
4 6
|
eqtr4d |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
8 |
|
neneq |
⊢ ( 𝑋 ≠ 𝑌 → ¬ 𝑋 = 𝑌 ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) → ¬ 𝑋 = 𝑌 ) |
10 |
9
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ 𝑋 = 𝑌 ) |
11 |
7 10
|
jcnd |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
12 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
13 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) |
14 |
12 13
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
15 |
14
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
17 |
16
|
eqeq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
18 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) |
19 |
17 18
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
20 |
19
|
notbid |
⊢ ( 𝑦 = 𝑌 → ( ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
21 |
15 20
|
rspc2ev |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ ¬ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
22 |
1 2 11 21
|
syl2an23an |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
23 |
|
rexnal2 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
24 |
22 23
|
sylib |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
25 |
24
|
olcd |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ( ¬ 𝐹 : 𝐴 ⟶ 𝐶 ∨ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
26 |
|
ianor |
⊢ ( ¬ ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ 𝐹 : 𝐴 ⟶ 𝐶 ∨ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
27 |
|
dff13 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
28 |
26 27
|
xchnxbir |
⊢ ( ¬ 𝐹 : 𝐴 –1-1→ 𝐶 ↔ ( ¬ 𝐹 : 𝐴 ⟶ 𝐶 ∨ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
29 |
25 28
|
sylibr |
⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌 ) ) → ¬ 𝐹 : 𝐴 –1-1→ 𝐶 ) |