| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 )  →  𝑋  ∈  𝐴 ) | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 )  →  𝑌  ∈  𝐴 ) | 
						
							| 3 |  | fvconst | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  𝑋  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑋 )  =  𝐵 ) | 
						
							| 4 | 1 3 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝐹 ‘ 𝑋 )  =  𝐵 ) | 
						
							| 5 |  | fvconst | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  𝑌  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑌 )  =  𝐵 ) | 
						
							| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝐹 ‘ 𝑌 )  =  𝐵 ) | 
						
							| 7 | 4 6 | eqtr4d | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 8 |  | neneq | ⊢ ( 𝑋  ≠  𝑌  →  ¬  𝑋  =  𝑌 ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 )  →  ¬  𝑋  =  𝑌 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ¬  𝑋  =  𝑌 ) | 
						
							| 11 | 7 10 | jcnd | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ¬  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) | 
						
							| 12 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 13 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  𝑦  ↔  𝑋  =  𝑦 ) ) | 
						
							| 14 | 12 13 | imbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 ) ) ) | 
						
							| 15 | 14 | notbid | ⊢ ( 𝑥  =  𝑋  →  ( ¬  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ¬  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 17 | 16 | eqeq2d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 18 |  | eqeq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋  =  𝑦  ↔  𝑋  =  𝑌 ) ) | 
						
							| 19 | 17 18 | imbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 20 | 19 | notbid | ⊢ ( 𝑦  =  𝑌  →  ( ¬  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ↔  ¬  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 21 | 15 20 | rspc2ev | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  ¬  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 22 | 1 2 11 21 | syl2an23an | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 23 |  | rexnal2 | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 24 | 22 23 | sylib | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 25 | 24 | olcd | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ( ¬  𝐹 : 𝐴 ⟶ 𝐶  ∨  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 26 |  | ianor | ⊢ ( ¬  ( 𝐹 : 𝐴 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ↔  ( ¬  𝐹 : 𝐴 ⟶ 𝐶  ∨  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 27 |  | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐶  ↔  ( 𝐹 : 𝐴 ⟶ 𝐶  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 28 | 26 27 | xchnxbir | ⊢ ( ¬  𝐹 : 𝐴 –1-1→ 𝐶  ↔  ( ¬  𝐹 : 𝐴 ⟶ 𝐶  ∨  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 29 | 25 28 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ { 𝐵 }  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) )  →  ¬  𝐹 : 𝐴 –1-1→ 𝐶 ) |