Metamath Proof Explorer


Theorem nf1const

Description: A constant function from at least two elements is not one-to-one. (Contributed by AV, 30-Mar-2024)

Ref Expression
Assertion nf1const ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ¬ 𝐹 : 𝐴1-1𝐶 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) → 𝑋𝐴 )
2 simp2 ( ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) → 𝑌𝐴 )
3 fvconst ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑋𝐴 ) → ( 𝐹𝑋 ) = 𝐵 )
4 1 3 sylan2 ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ( 𝐹𝑋 ) = 𝐵 )
5 fvconst ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝑌𝐴 ) → ( 𝐹𝑌 ) = 𝐵 )
6 2 5 sylan2 ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ( 𝐹𝑌 ) = 𝐵 )
7 4 6 eqtr4d ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ( 𝐹𝑋 ) = ( 𝐹𝑌 ) )
8 neneq ( 𝑋𝑌 → ¬ 𝑋 = 𝑌 )
9 8 3ad2ant3 ( ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) → ¬ 𝑋 = 𝑌 )
10 9 adantl ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ¬ 𝑋 = 𝑌 )
11 7 10 jcnd ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ¬ ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) → 𝑋 = 𝑌 ) )
12 fveqeq2 ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ↔ ( 𝐹𝑋 ) = ( 𝐹𝑦 ) ) )
13 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦𝑋 = 𝑦 ) )
14 12 13 imbi12d ( 𝑥 = 𝑋 → ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹𝑋 ) = ( 𝐹𝑦 ) → 𝑋 = 𝑦 ) ) )
15 14 notbid ( 𝑥 = 𝑋 → ( ¬ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ( ( 𝐹𝑋 ) = ( 𝐹𝑦 ) → 𝑋 = 𝑦 ) ) )
16 fveq2 ( 𝑦 = 𝑌 → ( 𝐹𝑦 ) = ( 𝐹𝑌 ) )
17 16 eqeq2d ( 𝑦 = 𝑌 → ( ( 𝐹𝑋 ) = ( 𝐹𝑦 ) ↔ ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ) )
18 eqeq2 ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦𝑋 = 𝑌 ) )
19 17 18 imbi12d ( 𝑦 = 𝑌 → ( ( ( 𝐹𝑋 ) = ( 𝐹𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) → 𝑋 = 𝑌 ) ) )
20 19 notbid ( 𝑦 = 𝑌 → ( ¬ ( ( 𝐹𝑋 ) = ( 𝐹𝑦 ) → 𝑋 = 𝑦 ) ↔ ¬ ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) → 𝑋 = 𝑌 ) ) )
21 15 20 rspc2ev ( ( 𝑋𝐴𝑌𝐴 ∧ ¬ ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) → 𝑋 = 𝑌 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
22 1 2 11 21 syl2an23an ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
23 rexnal2 ( ∃ 𝑥𝐴𝑦𝐴 ¬ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
24 22 23 sylib ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ¬ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
25 24 olcd ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ( ¬ 𝐹 : 𝐴𝐶 ∨ ¬ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
26 ianor ( ¬ ( 𝐹 : 𝐴𝐶 ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ 𝐹 : 𝐴𝐶 ∨ ¬ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
27 dff13 ( 𝐹 : 𝐴1-1𝐶 ↔ ( 𝐹 : 𝐴𝐶 ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
28 26 27 xchnxbir ( ¬ 𝐹 : 𝐴1-1𝐶 ↔ ( ¬ 𝐹 : 𝐴𝐶 ∨ ¬ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
29 25 28 sylibr ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ¬ 𝐹 : 𝐴1-1𝐶 )