Metamath Proof Explorer


Theorem nf1oconst

Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024)

Ref Expression
Assertion nf1oconst ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ¬ 𝐹 : 𝐴1-1-onto𝐶 )

Proof

Step Hyp Ref Expression
1 nf1const ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ¬ 𝐹 : 𝐴1-1𝐶 )
2 1 orcd ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ( ¬ 𝐹 : 𝐴1-1𝐶 ∨ ¬ 𝐹 : 𝐴onto𝐶 ) )
3 ianor ( ¬ ( 𝐹 : 𝐴1-1𝐶𝐹 : 𝐴onto𝐶 ) ↔ ( ¬ 𝐹 : 𝐴1-1𝐶 ∨ ¬ 𝐹 : 𝐴onto𝐶 ) )
4 df-f1o ( 𝐹 : 𝐴1-1-onto𝐶 ↔ ( 𝐹 : 𝐴1-1𝐶𝐹 : 𝐴onto𝐶 ) )
5 3 4 xchnxbir ( ¬ 𝐹 : 𝐴1-1-onto𝐶 ↔ ( ¬ 𝐹 : 𝐴1-1𝐶 ∨ ¬ 𝐹 : 𝐴onto𝐶 ) )
6 2 5 sylibr ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ¬ 𝐹 : 𝐴1-1-onto𝐶 )