Metamath Proof Explorer


Theorem nf3

Description: Alternate definition of nonfreeness. (Contributed by BJ, 16-Sep-2021)

Ref Expression
Assertion nf3 ( Ⅎ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nf2 ( Ⅎ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜑 ) )
2 alnex ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 )
3 2 orbi2i ( ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) ↔ ( ∀ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜑 ) )
4 1 3 bitr4i ( Ⅎ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) )