Metamath Proof Explorer
		
		
		
		Description:  Deduction form of bound-variable hypothesis builder nf3an .
       (Contributed by NM, 17-Feb-2013)  (Revised by Mario Carneiro, 16-Oct-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nfand.1 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜓 ) | 
					
						|  |  | nfand.2 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜒 ) | 
					
						|  |  | nfand.3 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜃 ) | 
				
					|  | Assertion | nf3and | ⊢  ( 𝜑  →  Ⅎ 𝑥 ( 𝜓  ∧  𝜒  ∧  𝜃 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfand.1 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜓 ) | 
						
							| 2 |  | nfand.2 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜒 ) | 
						
							| 3 |  | nfand.3 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜃 ) | 
						
							| 4 |  | df-3an | ⊢ ( ( 𝜓  ∧  𝜒  ∧  𝜃 )  ↔  ( ( 𝜓  ∧  𝜒 )  ∧  𝜃 ) ) | 
						
							| 5 | 1 2 | nfand | ⊢ ( 𝜑  →  Ⅎ 𝑥 ( 𝜓  ∧  𝜒 ) ) | 
						
							| 6 | 5 3 | nfand | ⊢ ( 𝜑  →  Ⅎ 𝑥 ( ( 𝜓  ∧  𝜒 )  ∧  𝜃 ) ) | 
						
							| 7 | 4 6 | nfxfrd | ⊢ ( 𝜑  →  Ⅎ 𝑥 ( 𝜓  ∧  𝜒  ∧  𝜃 ) ) |