Metamath Proof Explorer


Theorem nf5-1

Description: One direction of nf5 can be proved with a smaller footprint on axiom usage. (Contributed by Wolf Lammen, 16-Sep-2021)

Ref Expression
Assertion nf5-1 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → Ⅎ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 exim ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥𝑥 𝜑 ) )
2 hbe1a ( ∃ 𝑥𝑥 𝜑 → ∀ 𝑥 𝜑 )
3 1 2 syl6 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
4 3 nfd ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → Ⅎ 𝑥 𝜑 )