Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-10 (Quantified Negation)
nf5dh
Metamath Proof Explorer
Description: Deduce that x is not free in ps in a context. (Contributed by Mario Carneiro , 24-Sep-2016) df-nf changed. (Revised by Wolf Lammen , 11-Oct-2021)
Ref
Expression
Hypotheses
nf5dh.1
⊢ ( 𝜑 → ∀ 𝑥 𝜑 )
nf5dh.2
⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
Assertion
nf5dh
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
nf5dh.1
⊢ ( 𝜑 → ∀ 𝑥 𝜑 )
2
nf5dh.2
⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
3
1 2
alrimih
⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) )
4
nf5-1
⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → Ⅎ 𝑥 𝜓 )
5
3 4
syl
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 )