Metamath Proof Explorer


Theorem nf5dh

Description: Deduce that x is not free in ps in a context. (Contributed by Mario Carneiro, 24-Sep-2016) df-nf changed. (Revised by Wolf Lammen, 11-Oct-2021)

Ref Expression
Hypotheses nf5dh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
nf5dh.2 ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
Assertion nf5dh ( 𝜑 → Ⅎ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 nf5dh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 nf5dh.2 ( 𝜑 → ( 𝜓 → ∀ 𝑥 𝜓 ) )
3 1 2 alrimih ( 𝜑 → ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) )
4 nf5-1 ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → Ⅎ 𝑥 𝜓 )
5 3 4 syl ( 𝜑 → Ⅎ 𝑥 𝜓 )