Metamath Proof Explorer


Theorem nf6

Description: An alternate definition of df-nf . (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Assertion nf6 ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-nf ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
2 nfe1 𝑥𝑥 𝜑
3 2 19.21 ( ∀ 𝑥 ( ∃ 𝑥 𝜑𝜑 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
4 1 3 bitr4i ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( ∃ 𝑥 𝜑𝜑 ) )