Metamath Proof Explorer
Description: Lemma 24 of Monk2 p. 114. (Contributed by Mario Carneiro, 24-Sep-2016)
Remove dependency on ax-12 . (Revised by Wolf Lammen, 18-Oct-2021)
|
|
Ref |
Expression |
|
Assertion |
nfa2 |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∀ 𝑥 𝜑 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜑 ) |
2 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∀ 𝑦 𝜑 |
3 |
1 2
|
nfxfr |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∀ 𝑥 𝜑 |