Metamath Proof Explorer


Theorem nfa2

Description: Lemma 24 of Monk2 p. 114. (Contributed by Mario Carneiro, 24-Sep-2016) Remove dependency on ax-12 . (Revised by Wolf Lammen, 18-Oct-2021)

Ref Expression
Assertion nfa2 𝑥𝑦𝑥 𝜑

Proof

Step Hyp Ref Expression
1 alcom ( ∀ 𝑦𝑥 𝜑 ↔ ∀ 𝑥𝑦 𝜑 )
2 nfa1 𝑥𝑥𝑦 𝜑
3 1 2 nfxfr 𝑥𝑦𝑥 𝜑