Metamath Proof Explorer


Theorem nfabdw

Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (Revised by Gino Giotto, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Sep-2024)

Ref Expression
Hypotheses nfabdw.1 𝑦 𝜑
nfabdw.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfabdw ( 𝜑 𝑥 { 𝑦𝜓 } )

Proof

Step Hyp Ref Expression
1 nfabdw.1 𝑦 𝜑
2 nfabdw.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
3 nfv 𝑧 𝜑
4 df-clab ( 𝑧 ∈ { 𝑦𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 )
5 sb6 ( [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ( 𝑦 = 𝑧𝜓 ) )
6 4 5 bitri ( 𝑧 ∈ { 𝑦𝜓 } ↔ ∀ 𝑦 ( 𝑦 = 𝑧𝜓 ) )
7 nfvd ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝑧 )
8 7 2 nfimd ( 𝜑 → Ⅎ 𝑥 ( 𝑦 = 𝑧𝜓 ) )
9 1 8 nfald ( 𝜑 → Ⅎ 𝑥𝑦 ( 𝑦 = 𝑧𝜓 ) )
10 6 9 nfxfrd ( 𝜑 → Ⅎ 𝑥 𝑧 ∈ { 𝑦𝜓 } )
11 3 10 nfcd ( 𝜑 𝑥 { 𝑦𝜓 } )