Step |
Hyp |
Ref |
Expression |
1 |
|
nfabdw.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
nfabdw.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
3 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
4 |
|
df-clab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 ) |
5 |
1 2
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑦 Ⅎ 𝑥 𝜓 ) |
6 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 Ⅎ 𝑥 𝜓 |
7 |
|
sb6 |
⊢ ( [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜓 ) ) |
8 |
7
|
a1i |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → ( [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜓 ) ) ) |
9 |
7
|
biimpri |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜓 ) → [ 𝑧 / 𝑦 ] 𝜓 ) |
10 |
9
|
axc4i |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜓 ) → ∀ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ) |
11 |
8 10
|
syl6bi |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → ( [ 𝑧 / 𝑦 ] 𝜓 → ∀ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ) ) |
12 |
6 11
|
nf5d |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ) |
13 |
6 12
|
nfim1 |
⊢ Ⅎ 𝑦 ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → [ 𝑧 / 𝑦 ] 𝜓 ) |
14 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑧 → ( 𝜓 ↔ [ 𝑧 / 𝑦 ] 𝜓 ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → 𝜓 ) ↔ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → [ 𝑧 / 𝑦 ] 𝜓 ) ) ) |
16 |
13 15
|
equsalv |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑧 → ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → 𝜓 ) ) ↔ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → [ 𝑧 / 𝑦 ] 𝜓 ) ) |
17 |
16
|
bicomi |
⊢ ( ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → [ 𝑧 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → 𝜓 ) ) ) |
18 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝑧 |
19 |
|
nfnf1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝜓 |
20 |
19
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 Ⅎ 𝑥 𝜓 |
21 |
|
sp |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → Ⅎ 𝑥 𝜓 ) |
22 |
20 21
|
nfim1 |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → 𝜓 ) |
23 |
18 22
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝑧 → ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → 𝜓 ) ) |
24 |
23
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑧 → ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → 𝜓 ) ) |
25 |
17 24
|
nfxfr |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → [ 𝑧 / 𝑦 ] 𝜓 ) |
26 |
|
pm5.5 |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → ( ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → [ 𝑧 / 𝑦 ] 𝜓 ) ↔ [ 𝑧 / 𝑦 ] 𝜓 ) ) |
27 |
20 26
|
nfbidf |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → ( Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → [ 𝑧 / 𝑦 ] 𝜓 ) ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ) ) |
28 |
25 27
|
mpbii |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜓 → Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ) |
29 |
5 28
|
syl |
⊢ ( 𝜑 → Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ) |
30 |
4 29
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 ∈ { 𝑦 ∣ 𝜓 } ) |
31 |
3 30
|
nfcd |
⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ) |