Description: If x is not free in ph , then it is not free in A. y ph . (Contributed by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfal.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑦 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfal.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | 1 | nf5ri | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
| 3 | 2 | hbal | ⊢ ( ∀ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑦 𝜑 ) |
| 4 | 3 | nf5i | ⊢ Ⅎ 𝑥 ∀ 𝑦 𝜑 |