Metamath Proof Explorer


Theorem nfald

Description: Deduction form of nfal . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 16-Oct-2021)

Ref Expression
Hypotheses nfald.1 𝑦 𝜑
nfald.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfald ( 𝜑 → Ⅎ 𝑥𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 nfald.1 𝑦 𝜑
2 nfald.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
3 19.12 ( ∃ 𝑥𝑦 𝜓 → ∀ 𝑦𝑥 𝜓 )
4 2 nfrd ( 𝜑 → ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) )
5 1 4 alimd ( 𝜑 → ( ∀ 𝑦𝑥 𝜓 → ∀ 𝑦𝑥 𝜓 ) )
6 ax-11 ( ∀ 𝑦𝑥 𝜓 → ∀ 𝑥𝑦 𝜓 )
7 3 5 6 syl56 ( 𝜑 → ( ∃ 𝑥𝑦 𝜓 → ∀ 𝑥𝑦 𝜓 ) )
8 7 nfd ( 𝜑 → Ⅎ 𝑥𝑦 𝜓 )