Metamath Proof Explorer


Theorem nfbid

Description: If in a context x is not free in ps and ch , then it is not free in ( ps <-> ch ) . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 29-Dec-2017)

Ref Expression
Hypotheses nfbid.1 ( 𝜑 → Ⅎ 𝑥 𝜓 )
nfbid.2 ( 𝜑 → Ⅎ 𝑥 𝜒 )
Assertion nfbid ( 𝜑 → Ⅎ 𝑥 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 nfbid.1 ( 𝜑 → Ⅎ 𝑥 𝜓 )
2 nfbid.2 ( 𝜑 → Ⅎ 𝑥 𝜒 )
3 dfbi2 ( ( 𝜓𝜒 ) ↔ ( ( 𝜓𝜒 ) ∧ ( 𝜒𝜓 ) ) )
4 1 2 nfimd ( 𝜑 → Ⅎ 𝑥 ( 𝜓𝜒 ) )
5 2 1 nfimd ( 𝜑 → Ⅎ 𝑥 ( 𝜒𝜓 ) )
6 4 5 nfand ( 𝜑 → Ⅎ 𝑥 ( ( 𝜓𝜒 ) ∧ ( 𝜒𝜓 ) ) )
7 3 6 nfxfrd ( 𝜑 → Ⅎ 𝑥 ( 𝜓𝜒 ) )