Metamath Proof Explorer


Theorem nfbiit

Description: Equivalence theorem for the nonfreeness predicate. Closed form of nfbii . (Contributed by Giovanni Mascellani, 10-Apr-2018) Reduce axiom usage. (Revised by BJ, 6-May-2019)

Ref Expression
Assertion nfbiit ( ∀ 𝑥 ( 𝜑𝜓 ) → ( Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exbi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 ) )
2 albi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) )
3 1 2 imbi12d ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) ) )
4 df-nf ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
5 df-nf ( Ⅎ 𝑥 𝜓 ↔ ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) )
6 3 4 5 3bitr4g ( ∀ 𝑥 ( 𝜑𝜓 ) → ( Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 𝜓 ) )