Description: Equivalence theorem for the nonfreeness predicate. Closed form of nfbii . (Contributed by Giovanni Mascellani, 10-Apr-2018) Reduce axiom usage. (Revised by BJ, 6-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfbiit | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 ) ) | |
| 2 | albi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) ) | |
| 3 | 1 2 | imbi12d | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) ) ) |
| 4 | df-nf | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 5 | df-nf | ⊢ ( Ⅎ 𝑥 𝜓 ↔ ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 𝜓 ) ) |