Metamath Proof Explorer
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999) (Revised by Mario Carneiro, 14-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfbr.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
nfbr.2 |
⊢ Ⅎ 𝑥 𝑅 |
|
|
nfbr.3 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
nfbr |
⊢ Ⅎ 𝑥 𝐴 𝑅 𝐵 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfbr.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
nfbr.2 |
⊢ Ⅎ 𝑥 𝑅 |
| 3 |
|
nfbr.3 |
⊢ Ⅎ 𝑥 𝐵 |
| 4 |
1
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝐴 ) |
| 5 |
2
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝑅 ) |
| 6 |
3
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝐵 ) |
| 7 |
4 5 6
|
nfbrd |
⊢ ( ⊤ → Ⅎ 𝑥 𝐴 𝑅 𝐵 ) |
| 8 |
7
|
mptru |
⊢ Ⅎ 𝑥 𝐴 𝑅 𝐵 |