Metamath Proof Explorer
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999) (Revised by Mario Carneiro, 14-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfbr.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
nfbr.2 |
⊢ Ⅎ 𝑥 𝑅 |
|
|
nfbr.3 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
nfbr |
⊢ Ⅎ 𝑥 𝐴 𝑅 𝐵 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfbr.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfbr.2 |
⊢ Ⅎ 𝑥 𝑅 |
3 |
|
nfbr.3 |
⊢ Ⅎ 𝑥 𝐵 |
4 |
1
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝐴 ) |
5 |
2
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝑅 ) |
6 |
3
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝐵 ) |
7 |
4 5 6
|
nfbrd |
⊢ ( ⊤ → Ⅎ 𝑥 𝐴 𝑅 𝐵 ) |
8 |
7
|
mptru |
⊢ Ⅎ 𝑥 𝐴 𝑅 𝐵 |