Metamath Proof Explorer


Theorem nfbrd

Description: Deduction version of bound-variable hypothesis builder nfbr . (Contributed by NM, 13-Dec-2005) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nfbrd.2 ( 𝜑 𝑥 𝐴 )
nfbrd.3 ( 𝜑 𝑥 𝑅 )
nfbrd.4 ( 𝜑 𝑥 𝐵 )
Assertion nfbrd ( 𝜑 → Ⅎ 𝑥 𝐴 𝑅 𝐵 )

Proof

Step Hyp Ref Expression
1 nfbrd.2 ( 𝜑 𝑥 𝐴 )
2 nfbrd.3 ( 𝜑 𝑥 𝑅 )
3 nfbrd.4 ( 𝜑 𝑥 𝐵 )
4 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
5 1 3 nfopd ( 𝜑 𝑥𝐴 , 𝐵 ⟩ )
6 5 2 nfeld ( 𝜑 → Ⅎ 𝑥𝐴 , 𝐵 ⟩ ∈ 𝑅 )
7 4 6 nfxfrd ( 𝜑 → Ⅎ 𝑥 𝐴 𝑅 𝐵 )