Metamath Proof Explorer
Description: Deduction version of bound-variable hypothesis builder nfbr .
(Contributed by NM, 13-Dec-2005) (Revised by Mario Carneiro, 14-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfbrd.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
|
|
nfbrd.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑅 ) |
|
|
nfbrd.4 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
|
Assertion |
nfbrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 𝑅 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfbrd.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
2 |
|
nfbrd.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑅 ) |
3 |
|
nfbrd.4 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
4 |
|
df-br |
⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) |
5 |
1 3
|
nfopd |
⊢ ( 𝜑 → Ⅎ 𝑥 〈 𝐴 , 𝐵 〉 ) |
6 |
5 2
|
nfeld |
⊢ ( 𝜑 → Ⅎ 𝑥 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) |
7 |
4 6
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 𝑅 𝐵 ) |