Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016) Avoid ax-8 and df-clel . (Revised by WL and SN, 23-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfceqdf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
nfceqdf.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
Assertion | nfceqdf | ⊢ ( 𝜑 → ( Ⅎ 𝑥 𝐴 ↔ Ⅎ 𝑥 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfceqdf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | nfceqdf.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
3 | eleq2w2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) | |
4 | 2 3 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
5 | 1 4 | nfbidf | ⊢ ( 𝜑 → ( Ⅎ 𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ 𝑥 𝑦 ∈ 𝐵 ) ) |
6 | 5 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) ) |
7 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) | |
8 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐵 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) | |
9 | 6 7 8 | 3bitr4g | ⊢ ( 𝜑 → ( Ⅎ 𝑥 𝐴 ↔ Ⅎ 𝑥 𝐵 ) ) |