Description: Obsolete version of nfceqdf as of 23-Aug-2024. (Contributed by Mario Carneiro, 14-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfceqdf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
nfceqdf.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
Assertion | nfceqdfOLD | ⊢ ( 𝜑 → ( Ⅎ 𝑥 𝐴 ↔ Ⅎ 𝑥 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfceqdf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | nfceqdf.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
3 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
4 | 1 3 | nfbidf | ⊢ ( 𝜑 → ( Ⅎ 𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ 𝑥 𝑦 ∈ 𝐵 ) ) |
5 | 4 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) ) |
6 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) | |
7 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐵 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) | |
8 | 5 6 7 | 3bitr4g | ⊢ ( 𝜑 → ( Ⅎ 𝑥 𝐴 ↔ Ⅎ 𝑥 𝐵 ) ) |