Metamath Proof Explorer


Theorem nfceqi

Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 16-Nov-2019) Avoid ax-12 . (Revised by Wolf Lammen, 19-Jun-2023)

Ref Expression
Hypothesis nfceqi.1 𝐴 = 𝐵
Assertion nfceqi ( 𝑥 𝐴 𝑥 𝐵 )

Proof

Step Hyp Ref Expression
1 nfceqi.1 𝐴 = 𝐵
2 1 eleq2i ( 𝑦𝐴𝑦𝐵 )
3 2 nfbii ( Ⅎ 𝑥 𝑦𝐴 ↔ Ⅎ 𝑥 𝑦𝐵 )
4 3 albii ( ∀ 𝑦𝑥 𝑦𝐴 ↔ ∀ 𝑦𝑥 𝑦𝐵 )
5 df-nfc ( 𝑥 𝐴 ↔ ∀ 𝑦𝑥 𝑦𝐴 )
6 df-nfc ( 𝑥 𝐵 ↔ ∀ 𝑦𝑥 𝑦𝐵 )
7 4 5 6 3bitr4i ( 𝑥 𝐴 𝑥 𝐵 )