Metamath Proof Explorer


Theorem nfcnv

Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypothesis nfcnv.1 𝑥 𝐴
Assertion nfcnv 𝑥 𝐴

Proof

Step Hyp Ref Expression
1 nfcnv.1 𝑥 𝐴
2 df-cnv 𝐴 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝑧 𝐴 𝑦 }
3 nfcv 𝑥 𝑧
4 nfcv 𝑥 𝑦
5 3 1 4 nfbr 𝑥 𝑧 𝐴 𝑦
6 5 nfopab 𝑥 { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝑧 𝐴 𝑦 }
7 2 6 nfcxfr 𝑥 𝐴