Metamath Proof Explorer
Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004) (Revised by Mario Carneiro, 15-Oct-2016)
|
|
Ref |
Expression |
|
Hypothesis |
nfcnv.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
Assertion |
nfcnv |
⊢ Ⅎ 𝑥 ◡ 𝐴 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcnv.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
df-cnv |
⊢ ◡ 𝐴 = { 〈 𝑦 , 𝑧 〉 ∣ 𝑧 𝐴 𝑦 } |
| 3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 5 |
3 1 4
|
nfbr |
⊢ Ⅎ 𝑥 𝑧 𝐴 𝑦 |
| 6 |
5
|
nfopab |
⊢ Ⅎ 𝑥 { 〈 𝑦 , 𝑧 〉 ∣ 𝑧 𝐴 𝑦 } |
| 7 |
2 6
|
nfcxfr |
⊢ Ⅎ 𝑥 ◡ 𝐴 |