Metamath Proof Explorer


Theorem nfco

Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999)

Ref Expression
Hypotheses nfco.1 𝑥 𝐴
nfco.2 𝑥 𝐵
Assertion nfco 𝑥 ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 nfco.1 𝑥 𝐴
2 nfco.2 𝑥 𝐵
3 df-co ( 𝐴𝐵 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ∃ 𝑤 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) }
4 nfcv 𝑥 𝑦
5 nfcv 𝑥 𝑤
6 4 2 5 nfbr 𝑥 𝑦 𝐵 𝑤
7 nfcv 𝑥 𝑧
8 5 1 7 nfbr 𝑥 𝑤 𝐴 𝑧
9 6 8 nfan 𝑥 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 )
10 9 nfex 𝑥𝑤 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 )
11 10 nfopab 𝑥 { ⟨ 𝑦 , 𝑧 ⟩ ∣ ∃ 𝑤 ( 𝑦 𝐵 𝑤𝑤 𝐴 𝑧 ) }
12 3 11 nfcxfr 𝑥 ( 𝐴𝐵 )