| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcprod.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | nfcprod.2 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 |  | df-prod | ⊢ ∏ 𝑘  ∈  𝐴 𝐵  =  ( ℩ 𝑦 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑧 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑥 ℤ | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑚 ) | 
						
							| 6 | 1 5 | nfss | ⊢ Ⅎ 𝑥 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑥 𝑧  ≠  0 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝑛 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥  · | 
						
							| 10 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑘  ∈  𝐴 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 1 | 
						
							| 12 | 10 2 11 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) | 
						
							| 13 | 4 12 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) | 
						
							| 14 | 8 9 13 | nfseq | ⊢ Ⅎ 𝑥 seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑥  ⇝ | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 17 | 14 15 16 | nfbr | ⊢ Ⅎ 𝑥 seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑧 | 
						
							| 18 | 7 17 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑧 ) | 
						
							| 19 | 18 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑧 ( 𝑧  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑧 ) | 
						
							| 20 | 5 19 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑧 ) | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑥 𝑚 | 
						
							| 22 | 21 9 13 | nfseq | ⊢ Ⅎ 𝑥 seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 24 | 22 15 23 | nfbr | ⊢ Ⅎ 𝑥 seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 | 
						
							| 25 | 6 20 24 | nf3an | ⊢ Ⅎ 𝑥 ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑧 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 ) | 
						
							| 26 | 4 25 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑧 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 ) | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑥 ℕ | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑥 𝑓 | 
						
							| 29 |  | nfcv | ⊢ Ⅎ 𝑥 ( 1 ... 𝑚 ) | 
						
							| 30 | 28 29 1 | nff1o | ⊢ Ⅎ 𝑥 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑛 ) | 
						
							| 32 | 31 2 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 | 
						
							| 33 | 27 32 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) | 
						
							| 34 | 11 9 33 | nfseq | ⊢ Ⅎ 𝑥 seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 35 | 34 21 | nffv | ⊢ Ⅎ 𝑥 ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) | 
						
							| 36 | 35 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) | 
						
							| 37 | 30 36 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 38 | 37 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 39 | 27 38 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 40 | 26 39 | nfor | ⊢ Ⅎ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑧 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) | 
						
							| 41 | 40 | nfiotaw | ⊢ Ⅎ 𝑥 ( ℩ 𝑦 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑧 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 42 | 3 41 | nfcxfr | ⊢ Ⅎ 𝑥 ∏ 𝑘  ∈  𝐴 𝐵 |