Step |
Hyp |
Ref |
Expression |
1 |
|
nfcprod.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfcprod.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
df-prod |
⊢ ∏ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑦 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 ℤ |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑚 ) |
6 |
1 5
|
nfss |
⊢ Ⅎ 𝑥 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ≠ 0 |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑛 |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 · |
10 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑘 ∈ 𝐴 |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 1 |
12 |
10 2 11
|
nfif |
⊢ Ⅎ 𝑥 if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) |
13 |
4 12
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
14 |
8 9 13
|
nfseq |
⊢ Ⅎ 𝑥 seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑥 ⇝ |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
17 |
14 15 16
|
nfbr |
⊢ Ⅎ 𝑥 seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 |
18 |
7 17
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) |
19 |
18
|
nfex |
⊢ Ⅎ 𝑥 ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) |
20 |
5 19
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
22 |
21 9 13
|
nfseq |
⊢ Ⅎ 𝑥 seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
24 |
22 15 23
|
nfbr |
⊢ Ⅎ 𝑥 seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 |
25 |
6 20 24
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) |
26 |
4 25
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑥 ℕ |
28 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑓 |
29 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 1 ... 𝑚 ) |
30 |
28 29 1
|
nff1o |
⊢ Ⅎ 𝑥 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 |
31 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑛 ) |
32 |
31 2
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 |
33 |
27 32
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
34 |
11 9 33
|
nfseq |
⊢ Ⅎ 𝑥 seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
35 |
34 21
|
nffv |
⊢ Ⅎ 𝑥 ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
36 |
35
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
37 |
30 36
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
38 |
37
|
nfex |
⊢ Ⅎ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
39 |
27 38
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
40 |
26 39
|
nfor |
⊢ Ⅎ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
41 |
40
|
nfiotaw |
⊢ Ⅎ 𝑥 ( ℩ 𝑦 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑧 ( 𝑧 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑧 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
42 |
3 41
|
nfcxfr |
⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ 𝐴 𝐵 |