| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcprod1.1 | ⊢ Ⅎ 𝑘 𝐴 | 
						
							| 2 |  | df-prod | ⊢ ∏ 𝑘  ∈  𝐴 𝐵  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑘 ℤ | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑘 ( ℤ≥ ‘ 𝑚 ) | 
						
							| 5 | 1 4 | nfss | ⊢ Ⅎ 𝑘 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑘 𝑦  ≠  0 | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑘 𝑛 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑘  · | 
						
							| 9 |  | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) | 
						
							| 10 | 7 8 9 | nfseq | ⊢ Ⅎ 𝑘 seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑘  ⇝ | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑘 𝑦 | 
						
							| 13 | 10 11 12 | nfbr | ⊢ Ⅎ 𝑘 seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 | 
						
							| 14 | 6 13 | nfan | ⊢ Ⅎ 𝑘 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 ) | 
						
							| 15 | 14 | nfex | ⊢ Ⅎ 𝑘 ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 ) | 
						
							| 16 | 4 15 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑘 𝑚 | 
						
							| 18 | 17 8 9 | nfseq | ⊢ Ⅎ 𝑘 seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) ) | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 20 | 18 11 19 | nfbr | ⊢ Ⅎ 𝑘 seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 | 
						
							| 21 | 5 16 20 | nf3an | ⊢ Ⅎ 𝑘 ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 ) | 
						
							| 22 | 3 21 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑘 ℕ | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑘 𝑓 | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑘 ( 1 ... 𝑚 ) | 
						
							| 26 | 24 25 1 | nff1o | ⊢ Ⅎ 𝑘 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑘 1 | 
						
							| 28 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 | 
						
							| 29 | 23 28 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) | 
						
							| 30 | 27 8 29 | nfseq | ⊢ Ⅎ 𝑘 seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 31 | 30 17 | nffv | ⊢ Ⅎ 𝑘 ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) | 
						
							| 32 | 31 | nfeq2 | ⊢ Ⅎ 𝑘 𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) | 
						
							| 33 | 26 32 | nfan | ⊢ Ⅎ 𝑘 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 34 | 33 | nfex | ⊢ Ⅎ 𝑘 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 35 | 23 34 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 36 | 22 35 | nfor | ⊢ Ⅎ 𝑘 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) | 
						
							| 37 | 36 | nfiotaw | ⊢ Ⅎ 𝑘 ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 38 | 2 37 | nfcxfr | ⊢ Ⅎ 𝑘 ∏ 𝑘  ∈  𝐴 𝐵 |