Metamath Proof Explorer


Theorem nfcr

Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016) Drop ax-12 but use ax-8 , df-clel , and avoid a DV condition on y , A . (Revised by SN, 3-Jun-2024)

Ref Expression
Assertion nfcr ( 𝑥 𝐴 → Ⅎ 𝑥 𝑦𝐴 )

Proof

Step Hyp Ref Expression
1 df-nfc ( 𝑥 𝐴 ↔ ∀ 𝑧𝑥 𝑧𝐴 )
2 eleq1w ( 𝑧 = 𝑦 → ( 𝑧𝐴𝑦𝐴 ) )
3 2 nfbidv ( 𝑧 = 𝑦 → ( Ⅎ 𝑥 𝑧𝐴 ↔ Ⅎ 𝑥 𝑦𝐴 ) )
4 3 spvv ( ∀ 𝑧𝑥 𝑧𝐴 → Ⅎ 𝑥 𝑦𝐴 )
5 1 4 sylbi ( 𝑥 𝐴 → Ⅎ 𝑥 𝑦𝐴 )