Step |
Hyp |
Ref |
Expression |
1 |
|
nfcrii.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
3 |
2
|
nfbidv |
⊢ ( 𝑧 = 𝑦 → ( Ⅎ 𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ 𝑥 𝑦 ∈ 𝐴 ) ) |
4 |
|
df-nfc |
⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑧 Ⅎ 𝑥 𝑧 ∈ 𝐴 ) |
5 |
4
|
biimpi |
⊢ ( Ⅎ 𝑥 𝐴 → ∀ 𝑧 Ⅎ 𝑥 𝑧 ∈ 𝐴 ) |
6 |
|
df-nf |
⊢ ( Ⅎ 𝑥 𝑧 ∈ 𝐴 ↔ ( ∃ 𝑥 𝑧 ∈ 𝐴 → ∀ 𝑥 𝑧 ∈ 𝐴 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑧 Ⅎ 𝑥 𝑧 ∈ 𝐴 ↔ ∀ 𝑧 ( ∃ 𝑥 𝑧 ∈ 𝐴 → ∀ 𝑥 𝑧 ∈ 𝐴 ) ) |
8 |
|
eleq1w |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
9 |
8
|
exbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 𝑧 ∈ 𝐴 ↔ ∃ 𝑥 𝑤 ∈ 𝐴 ) ) |
10 |
8
|
albidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 𝑧 ∈ 𝐴 ↔ ∀ 𝑥 𝑤 ∈ 𝐴 ) ) |
11 |
9 10
|
imbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( ∃ 𝑥 𝑧 ∈ 𝐴 → ∀ 𝑥 𝑧 ∈ 𝐴 ) ↔ ( ∃ 𝑥 𝑤 ∈ 𝐴 → ∀ 𝑥 𝑤 ∈ 𝐴 ) ) ) |
12 |
11
|
spw |
⊢ ( ∀ 𝑧 ( ∃ 𝑥 𝑧 ∈ 𝐴 → ∀ 𝑥 𝑧 ∈ 𝐴 ) → ( ∃ 𝑥 𝑧 ∈ 𝐴 → ∀ 𝑥 𝑧 ∈ 𝐴 ) ) |
13 |
7 12
|
sylbi |
⊢ ( ∀ 𝑧 Ⅎ 𝑥 𝑧 ∈ 𝐴 → ( ∃ 𝑥 𝑧 ∈ 𝐴 → ∀ 𝑥 𝑧 ∈ 𝐴 ) ) |
14 |
1 5 13
|
mp2b |
⊢ ( ∃ 𝑥 𝑧 ∈ 𝐴 → ∀ 𝑥 𝑧 ∈ 𝐴 ) |
15 |
14
|
nfi |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
16 |
3 15
|
chvarvv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |