Metamath Proof Explorer


Theorem nfcriOLDOLD

Description: Obsolete version of nfcri as of 26-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016) Avoid ax-10 , ax-11 . (Revised by Gino Giotto, 23-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis nfcrii.1 𝑥 𝐴
Assertion nfcriOLDOLD 𝑥 𝑦𝐴

Proof

Step Hyp Ref Expression
1 nfcrii.1 𝑥 𝐴
2 eleq1w ( 𝑧 = 𝑦 → ( 𝑧𝐴𝑦𝐴 ) )
3 2 nfbidv ( 𝑧 = 𝑦 → ( Ⅎ 𝑥 𝑧𝐴 ↔ Ⅎ 𝑥 𝑦𝐴 ) )
4 df-nfc ( 𝑥 𝐴 ↔ ∀ 𝑧𝑥 𝑧𝐴 )
5 4 biimpi ( 𝑥 𝐴 → ∀ 𝑧𝑥 𝑧𝐴 )
6 df-nf ( Ⅎ 𝑥 𝑧𝐴 ↔ ( ∃ 𝑥 𝑧𝐴 → ∀ 𝑥 𝑧𝐴 ) )
7 6 albii ( ∀ 𝑧𝑥 𝑧𝐴 ↔ ∀ 𝑧 ( ∃ 𝑥 𝑧𝐴 → ∀ 𝑥 𝑧𝐴 ) )
8 sp ( ∀ 𝑧 ( ∃ 𝑥 𝑧𝐴 → ∀ 𝑥 𝑧𝐴 ) → ( ∃ 𝑥 𝑧𝐴 → ∀ 𝑥 𝑧𝐴 ) )
9 7 8 sylbi ( ∀ 𝑧𝑥 𝑧𝐴 → ( ∃ 𝑥 𝑧𝐴 → ∀ 𝑥 𝑧𝐴 ) )
10 1 5 9 mp2b ( ∃ 𝑥 𝑧𝐴 → ∀ 𝑥 𝑧𝐴 )
11 10 nfi 𝑥 𝑧𝐴
12 3 11 chvarvv 𝑥 𝑦𝐴