Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Class form not-free predicate
nfcriiOLD
Metamath Proof Explorer
Description: Obsolete version of nfcrii as of 23-May-2024. (Contributed by Mario
Carneiro , 11-Aug-2016) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypothesis
nfcriOLD.1
⊢ Ⅎ 𝑥 𝐴
Assertion
nfcriiOLD
⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 𝑦 ∈ 𝐴 )
Proof
Step
Hyp
Ref
Expression
1
nfcriOLD.1
⊢ Ⅎ 𝑥 𝐴
2
1
nfcri
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴
3
2
nfsbv
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑧 ] 𝑧 ∈ 𝐴
4
3
nf5ri
⊢ ( [ 𝑦 / 𝑧 ] 𝑧 ∈ 𝐴 → ∀ 𝑥 [ 𝑦 / 𝑧 ] 𝑧 ∈ 𝐴 )
5
clelsb1
⊢ ( [ 𝑦 / 𝑧 ] 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 )
6
5
albii
⊢ ( ∀ 𝑥 [ 𝑦 / 𝑧 ] 𝑧 ∈ 𝐴 ↔ ∀ 𝑥 𝑦 ∈ 𝐴 )
7
4 5 6
3imtr3i
⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 𝑦 ∈ 𝐴 )