Metamath Proof Explorer


Theorem nfcriiOLD

Description: Obsolete version of nfcrii as of 23-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nfcriOLD.1 𝑥 𝐴
Assertion nfcriiOLD ( 𝑦𝐴 → ∀ 𝑥 𝑦𝐴 )

Proof

Step Hyp Ref Expression
1 nfcriOLD.1 𝑥 𝐴
2 1 nfcri 𝑥 𝑧𝐴
3 2 nfsbv 𝑥 [ 𝑦 / 𝑧 ] 𝑧𝐴
4 3 nf5ri ( [ 𝑦 / 𝑧 ] 𝑧𝐴 → ∀ 𝑥 [ 𝑦 / 𝑧 ] 𝑧𝐴 )
5 clelsb1 ( [ 𝑦 / 𝑧 ] 𝑧𝐴𝑦𝐴 )
6 5 albii ( ∀ 𝑥 [ 𝑦 / 𝑧 ] 𝑧𝐴 ↔ ∀ 𝑥 𝑦𝐴 )
7 4 5 6 3imtr3i ( 𝑦𝐴 → ∀ 𝑥 𝑦𝐴 )