Metamath Proof Explorer


Theorem nfcsb1d

Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypothesis nfcsb1d.1 ( 𝜑 𝑥 𝐴 )
Assertion nfcsb1d ( 𝜑 𝑥 𝐴 / 𝑥 𝐵 )

Proof

Step Hyp Ref Expression
1 nfcsb1d.1 ( 𝜑 𝑥 𝐴 )
2 df-csb 𝐴 / 𝑥 𝐵 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 }
3 nfv 𝑦 𝜑
4 1 nfsbc1d ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝑦𝐵 )
5 3 4 nfabdw ( 𝜑 𝑥 { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 } )
6 2 5 nfcxfrd ( 𝜑 𝑥 𝐴 / 𝑥 𝐵 )