Metamath Proof Explorer


Theorem nfcsbd

Description: Deduction version of nfcsb . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 21-Nov-2005) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfcsbd.1 𝑦 𝜑
nfcsbd.2 ( 𝜑 𝑥 𝐴 )
nfcsbd.3 ( 𝜑 𝑥 𝐵 )
Assertion nfcsbd ( 𝜑 𝑥 𝐴 / 𝑦 𝐵 )

Proof

Step Hyp Ref Expression
1 nfcsbd.1 𝑦 𝜑
2 nfcsbd.2 ( 𝜑 𝑥 𝐴 )
3 nfcsbd.3 ( 𝜑 𝑥 𝐵 )
4 df-csb 𝐴 / 𝑦 𝐵 = { 𝑧[ 𝐴 / 𝑦 ] 𝑧𝐵 }
5 nfv 𝑧 𝜑
6 3 nfcrd ( 𝜑 → Ⅎ 𝑥 𝑧𝐵 )
7 1 2 6 nfsbcd ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝑧𝐵 )
8 5 7 nfabd ( 𝜑 𝑥 { 𝑧[ 𝐴 / 𝑦 ] 𝑧𝐵 } )
9 4 8 nfcxfrd ( 𝜑 𝑥 𝐴 / 𝑦 𝐵 )