Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
nfcsbd
Metamath Proof Explorer
Description: Deduction version of nfcsb . Usage of this theorem is discouraged
because it depends on ax-13 . (Contributed by NM , 21-Nov-2005)
(Revised by Mario Carneiro , 12-Oct-2016)
(New usage is discouraged.)
Ref
Expression
Hypotheses
nfcsbd.1
⊢ Ⅎ 𝑦 𝜑
nfcsbd.2
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 )
nfcsbd.3
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 )
Assertion
nfcsbd
⊢ ( 𝜑 → Ⅎ 𝑥 ⦋ 𝐴 / 𝑦 ⦌ 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
nfcsbd.1
⊢ Ⅎ 𝑦 𝜑
2
nfcsbd.2
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 )
3
nfcsbd.3
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 )
4
df-csb
⊢ ⦋ 𝐴 / 𝑦 ⦌ 𝐵 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐵 }
5
nfv
⊢ Ⅎ 𝑧 𝜑
6
3
nfcrd
⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 ∈ 𝐵 )
7
1 2 6
nfsbcd
⊢ ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐵 )
8
5 7
nfabd
⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐵 } )
9
4 8
nfcxfrd
⊢ ( 𝜑 → Ⅎ 𝑥 ⦋ 𝐴 / 𝑦 ⦌ 𝐵 )