Metamath Proof Explorer


Theorem nfdif

Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses nfdif.1 𝑥 𝐴
nfdif.2 𝑥 𝐵
Assertion nfdif 𝑥 ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 nfdif.1 𝑥 𝐴
2 nfdif.2 𝑥 𝐵
3 dfdif2 ( 𝐴𝐵 ) = { 𝑦𝐴 ∣ ¬ 𝑦𝐵 }
4 2 nfcri 𝑥 𝑦𝐵
5 4 nfn 𝑥 ¬ 𝑦𝐵
6 5 1 nfrabw 𝑥 { 𝑦𝐴 ∣ ¬ 𝑦𝐵 }
7 3 6 nfcxfr 𝑥 ( 𝐴𝐵 )