Metamath Proof Explorer
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003) (Revised by Mario Carneiro, 13-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfdif.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
nfdif.2 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
nfdif |
⊢ Ⅎ 𝑥 ( 𝐴 ∖ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfdif.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfdif.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
dfdif2 |
⊢ ( 𝐴 ∖ 𝐵 ) = { 𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵 } |
4 |
2
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
5 |
4
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝑦 ∈ 𝐵 |
6 |
5 1
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵 } |
7 |
3 6
|
nfcxfr |
⊢ Ⅎ 𝑥 ( 𝐴 ∖ 𝐵 ) |