Step |
Hyp |
Ref |
Expression |
1 |
|
nfdisj.1 |
⊢ Ⅎ 𝑦 𝐴 |
2 |
|
nfdisj.2 |
⊢ Ⅎ 𝑦 𝐵 |
3 |
|
dfdisj2 |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
4 |
|
nftru |
⊢ Ⅎ 𝑥 ⊤ |
5 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) |
6 |
1
|
a1i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝐴 ) |
7 |
5 6
|
nfeld |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ∈ 𝐴 ) |
8 |
2
|
nfcri |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵 |
9 |
8
|
a1i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑧 ∈ 𝐵 ) |
10 |
7 9
|
nfand |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
11 |
10
|
adantl |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
12 |
4 11
|
nfmod2 |
⊢ ( ⊤ → Ⅎ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
13 |
12
|
mptru |
⊢ Ⅎ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) |
14 |
13
|
nfal |
⊢ Ⅎ 𝑦 ∀ 𝑧 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) |
15 |
3 14
|
nfxfr |
⊢ Ⅎ 𝑦 Disj 𝑥 ∈ 𝐴 𝐵 |