Metamath Proof Explorer


Theorem nfdisj

Description: Bound-variable hypothesis builder for disjoint collection. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfdisjw when possible. (Contributed by Mario Carneiro, 14-Nov-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfdisj.1 𝑦 𝐴
nfdisj.2 𝑦 𝐵
Assertion nfdisj 𝑦 Disj 𝑥𝐴 𝐵

Proof

Step Hyp Ref Expression
1 nfdisj.1 𝑦 𝐴
2 nfdisj.2 𝑦 𝐵
3 dfdisj2 ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥 ( 𝑥𝐴𝑧𝐵 ) )
4 nftru 𝑥
5 nfcvf ( ¬ ∀ 𝑦 𝑦 = 𝑥 𝑦 𝑥 )
6 1 a1i ( ¬ ∀ 𝑦 𝑦 = 𝑥 𝑦 𝐴 )
7 5 6 nfeld ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥𝐴 )
8 2 nfcri 𝑦 𝑧𝐵
9 8 a1i ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑧𝐵 )
10 7 9 nfand ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 ( 𝑥𝐴𝑧𝐵 ) )
11 10 adantl ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑥𝐴𝑧𝐵 ) )
12 4 11 nfmod2 ( ⊤ → Ⅎ 𝑦 ∃* 𝑥 ( 𝑥𝐴𝑧𝐵 ) )
13 12 mptru 𝑦 ∃* 𝑥 ( 𝑥𝐴𝑧𝐵 )
14 13 nfal 𝑦𝑧 ∃* 𝑥 ( 𝑥𝐴𝑧𝐵 )
15 3 14 nfxfr 𝑦 Disj 𝑥𝐴 𝐵