Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
nfdisjw
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for disjoint collection. Version of
nfdisj with a disjoint variable condition, which does not require
ax-13 . (Contributed by Mario Carneiro , 14-Nov-2016) (Revised by Gino Giotto , 26-Jan-2024)
Ref
Expression
Hypotheses
nfdisjw.1
⊢ Ⅎ 𝑦 𝐴
nfdisjw.2
⊢ Ⅎ 𝑦 𝐵
Assertion
nfdisjw
⊢ Ⅎ 𝑦 Disj 𝑥 ∈ 𝐴 𝐵
Proof
Step
Hyp
Ref
Expression
1
nfdisjw.1
⊢ Ⅎ 𝑦 𝐴
2
nfdisjw.2
⊢ Ⅎ 𝑦 𝐵
3
dfdisj2
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) )
4
nftru
⊢ Ⅎ 𝑥 ⊤
5
nfcvd
⊢ ( ⊤ → Ⅎ 𝑦 𝑥 )
6
1
a1i
⊢ ( ⊤ → Ⅎ 𝑦 𝐴 )
7
5 6
nfeld
⊢ ( ⊤ → Ⅎ 𝑦 𝑥 ∈ 𝐴 )
8
2
nfcri
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵
9
8
a1i
⊢ ( ⊤ → Ⅎ 𝑦 𝑧 ∈ 𝐵 )
10
7 9
nfand
⊢ ( ⊤ → Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) )
11
4 10
nfmodv
⊢ ( ⊤ → Ⅎ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) )
12
11
mptru
⊢ Ⅎ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 )
13
12
nfal
⊢ Ⅎ 𝑦 ∀ 𝑧 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 )
14
3 13
nfxfr
⊢ Ⅎ 𝑦 Disj 𝑥 ∈ 𝐴 𝐵