Metamath Proof Explorer


Theorem nfdisjw

Description: Bound-variable hypothesis builder for disjoint collection. Version of nfdisj with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses nfdisjw.1 𝑦 𝐴
nfdisjw.2 𝑦 𝐵
Assertion nfdisjw 𝑦 Disj 𝑥𝐴 𝐵

Proof

Step Hyp Ref Expression
1 nfdisjw.1 𝑦 𝐴
2 nfdisjw.2 𝑦 𝐵
3 dfdisj2 ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥 ( 𝑥𝐴𝑧𝐵 ) )
4 nftru 𝑥
5 nfcvd ( ⊤ → 𝑦 𝑥 )
6 1 a1i ( ⊤ → 𝑦 𝐴 )
7 5 6 nfeld ( ⊤ → Ⅎ 𝑦 𝑥𝐴 )
8 2 nfcri 𝑦 𝑧𝐵
9 8 a1i ( ⊤ → Ⅎ 𝑦 𝑧𝐵 )
10 7 9 nfand ( ⊤ → Ⅎ 𝑦 ( 𝑥𝐴𝑧𝐵 ) )
11 4 10 nfmodv ( ⊤ → Ⅎ 𝑦 ∃* 𝑥 ( 𝑥𝐴𝑧𝐵 ) )
12 11 mptru 𝑦 ∃* 𝑥 ( 𝑥𝐴𝑧𝐵 )
13 12 nfal 𝑦𝑧 ∃* 𝑥 ( 𝑥𝐴𝑧𝐵 )
14 3 13 nfxfr 𝑦 Disj 𝑥𝐴 𝐵