Metamath Proof Explorer
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022)
|
|
Ref |
Expression |
|
Hypotheses |
nfdju.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
nfdju.2 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
nfdju |
⊢ Ⅎ 𝑥 ( 𝐴 ⊔ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfdju.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfdju.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 { ∅ } |
5 |
4 1
|
nfxp |
⊢ Ⅎ 𝑥 ( { ∅ } × 𝐴 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 { 1o } |
7 |
6 2
|
nfxp |
⊢ Ⅎ 𝑥 ( { 1o } × 𝐵 ) |
8 |
5 7
|
nfun |
⊢ Ⅎ 𝑥 ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
9 |
3 8
|
nfcxfr |
⊢ Ⅎ 𝑥 ( 𝐴 ⊔ 𝐵 ) |