Metamath Proof Explorer
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004) (Revised by Mario Carneiro, 15-Oct-2016)
|
|
Ref |
Expression |
|
Hypothesis |
nfrn.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
Assertion |
nfdm |
⊢ Ⅎ 𝑥 dom 𝐴 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfrn.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
df-dm |
⊢ dom 𝐴 = { 𝑦 ∣ ∃ 𝑧 𝑦 𝐴 𝑧 } |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
5 |
3 1 4
|
nfbr |
⊢ Ⅎ 𝑥 𝑦 𝐴 𝑧 |
6 |
5
|
nfex |
⊢ Ⅎ 𝑥 ∃ 𝑧 𝑦 𝐴 𝑧 |
7 |
6
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∃ 𝑧 𝑦 𝐴 𝑧 } |
8 |
2 7
|
nfcxfr |
⊢ Ⅎ 𝑥 dom 𝐴 |