Metamath Proof Explorer


Theorem nfdm

Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypothesis nfrn.1 𝑥 𝐴
Assertion nfdm 𝑥 dom 𝐴

Proof

Step Hyp Ref Expression
1 nfrn.1 𝑥 𝐴
2 df-dm dom 𝐴 = { 𝑦 ∣ ∃ 𝑧 𝑦 𝐴 𝑧 }
3 nfcv 𝑥 𝑦
4 nfcv 𝑥 𝑧
5 3 1 4 nfbr 𝑥 𝑦 𝐴 𝑧
6 5 nfex 𝑥𝑧 𝑦 𝐴 𝑧
7 6 nfab 𝑥 { 𝑦 ∣ ∃ 𝑧 𝑦 𝐴 𝑧 }
8 2 7 nfcxfr 𝑥 dom 𝐴